什么是异步消息处理线程?
对于普通线程来说,执行完run()方法内的代码后线程就结束了。所谓异步消息处理线程
而言,线程启动后会进入一个无限循环体之中,每循环一次,就从其内部的消息队列中取出一
个消息,并回调该消息相应的消息处理函数,执行完一个消息后再继续回到循环体之中。除非
消息队列为空,线程会暂停,直到消息队列中有新的消息了,则继续无限循环。
异步消息处理线程其本质上也是一个线程,只不过这种线程的执行代码被设计成如上所描述
的逻辑而已。一般来说,当同时处在以下两种需求时使用异步消息处理线程:
1.任务需要常驻。比如说用于处理用户交互的任务。
2.任务需要根据外部传递的消息而执行不同的操作。
当有这两种需求的时候,就应该使用一个异步消息处理线程去接管。
实现异步消息处理线程的思路
实现异步线程要解决的问题具体包括:
1.每个异步线程内部包含一个消息队列(MessageQueue),队列中的消息一般采用排队机制
即先到达的消息会先得到处理。
2.线程的执行体中使用while (tru e )进行无限循环,循环体中从消息队列中取出消息,并且根
据消息的来源,回调其对应的消息处理函数。
3.其他外部线程可以向本线程的消息队列中发送消息,消息队列内部的读/写操作必须进行加锁
即消息队列不能同时进行读/ 写操作。
Android中异步线程的实现(Looper、MessageQueue、Handler)
在线程内部有一个或多个Handler对象,外部程序通过该Handler对象向线程发送异步消息,消
息经由Handler传递到MessageQueue对象中。线程内部只能包含一个MessageQueue对象,线
程主执行函数中从MessageQueue中读取消息,并回调Handler对象中的回调函数handleMessage()。
线程局部存储(Thread Local Storage)
我们通过调用Looper类的静态方法prepare()为线程创建MessageQueue对象:
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;
private Printer mLogging;
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
从以上的Looper部分源代码可以可以看出,.变量sThreadLocal的类型是ThreadLocal,该类的作
用是提供“线程局部存储”,那么什么是线程局部存储(TLS)?这个问题嘛…可以从变量作用于的
角度来理解。
变量的常见作用域一般包括以下几种。
1.函数内部的变量。其作用域就是该函数,即每次调用该函数时,该变量都会重新回到初始值。
2.类内部的变量。其作用域是该类所产生的对象,即只要对象没有销毁,则对象内部的变量值
一直保持。
3.类内部的静态变量。其作用域是整个过程,即只要在该进程中,则该变量的值就一直保持,无
论使用该类构造过多少个对象,该变量只有一个赋值,并一直保持。
对于类内部的静态变量而言,无论是从进程中哪个线程引用该变量,其值总是相同的,因为在编
译器内部为静态变量分配了单独的内存空间。但有时我们却希望,当从同一个线程中引用该变量时
其值总是相同,而从不同的线程中引用该变量时,其值应该不同,即我们需要一种作用域为线程的
变量定义,这就是“ 线程局部存储”(同一个线程引用变量值相同,不同线程引用则变量值不相同)。
ThreadLocal就是能够提供这种功能的类,Looper内部的sThreadLocal变量是当该进程第一次调用
Looper.prepare()时被复制的,之后该进程中的其他线程调用prepare()函数时,sThreadLocal变量就已经
被赋值了。sThreadLocal对象内部会根据调用prepare()线程的id 保存一个数据对象,这个数据对象就是
所谓的“线程局部存储” 对象,该对象是通过sThreadLocal的set()方法设置进去的,Looper类中保存
的这个对象是一个Looper对象。
prepare()函数中首先调用sThreadLocal.get()函数获取该线程对应的Looper对象,如果该线程已经存
在Looper对象,则提示出错,否则,为该线程创建一个新的Looper对象。为什么一个线程中只能有一
个Looper对象呢?这仅仅是异步线程所需要的,因为每个Looper对象都会定义一个MessageQueue对
象,一个异步线程中只能有一个消息队列,所以也就只能有一个Looper对象,这与“线程局部存储”
本身没有什么关系,换句话说,这不是ThreadLocal 所导致的结果,可以使用ThreadLocal类来保存
任何数据对象,这就是为什么ThreadLocal是一个模板类的原因。
不同作用域的变量类型
变量作用域类型
意义
函数成员变量 仅在函数内部有效
类成员变量 仅在对象内部有效
线程局部存储(TLS)变量 在本线程内的任何对象内保持一致
静态变量 在本进程内的任何对象内保持一致
跨进程通信(IPC)变量 一般使用Binder进行定义,在所有进程中保持一致
Looper
Looper的作用有两点,第一是为调用该类中静态函数prepare()的线程创建一个消息队列;第二
是提供静态函数loop(),使调用该函数的线程进行无限循环,并从消息队列中读取消息。
创建一个消息队列
在Looper的静态函数prepare()中,会给线程局部存储变量中添加一个新的Looper对象,Looper
的构造函数中则会创建一个MessageQueue对象:
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper.prepare() -> 创建Looper -> 创建Looper时创建MessageQueue -> 然后调用Looper.loop()
当需要把一个线程变成异步消息处理线程时,应该在Thread类的run()函数中先调用Looper.prepare()
( sThreadLocal.set(new Looper(quitAllowed)); ) 为线程创建一个MessageQueue对象
(mQueue = new MessageQueue(quitAllowed); ) ,然后调用Looper.loop()函数,是当前线程进
入消息处理循环,让我们再来看看loop()函数的代码:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
loop()代码的执行流程:
1.调用myLooper函数返回当前线程的Looper对象,从如下myLooper()源码可以看出,该函
数内部仅仅通过调用sThreadLocal.get()方法返回当前线程id对象的Looper对象。
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
2.进入for(;;)无限循环:
<1>.调用MessageQueue对象的next()函数取出队列中的消息( Message msg = queue.next(); )
注意:如果当前队列为空则,则当前线程会被挂起,也就是说,next()函数内部会暂停当前线程。
<2>.回调msg.target.dispatchMessage()函数,完成对该消息的处理,也就是说,消息的具体处理实
际上是由程序指定的。msg变量的类型是Message,msg.target的类型是Handler。可以看如下Message源码:
/** If set message is in use.
* This flag is set when the message is enqueued and remains set while it
* is delivered and afterwards when it is recycled. The flag is only cleared
* when a new message is created or obtained since that is the only time that
* applications are allowed to modify the contents of the message.
*
* It is an error to attempt to enqueue or recycle a message that is already in use.
*/
/*package*/ static final int FLAG_IN_USE = 1 << 0;
/** If set message is asynchronous */
/*package*/ static final int FLAG_ASYNCHRONOUS = 1 << 1;
/** Flags to clear in the copyFrom method */
/*package*/ static final int FLAGS_TO_CLEAR_ON_COPY_FROM = FLAG_IN_USE;
/*package*/ int flags;
/*package*/ long when;
/*package*/ Bundle data;
/*package*/ Handler target;
/*package*/ Runnable callback;
/**
* Retrieve the a {@link android.os.Handler Handler} implementation that
* will receive this message. The object must implement
* {@link android.os.Handler#handleMessage(android.os.Message)
* Handler.handleMessage()}. Each Handler has its own name-space for
* message codes, so you do not need to
* worry about yours conflicting with other handlers.
*/
public Handler getTarget() {
return target;
}
<3>.每次处理完消息后,需要调用Message的recycle()回收该Message对象占用的系统资源。因为
Message类内部使用了一个数据池去保存Message对象,从而避免不停地创建和删除Message类对象
因此,每次处理完该消息后,需要将该Message对象表明为空闲,以便Message对象可以被重用。
Android5.0的Message.recycle()源码如下:
/**
* Return a Message instance to the global pool.
* <p>
* You MUST NOT touch the Message after calling this function because it has
* effectively been freed. It is an error to recycle a message that is currently
* enqueued or that is in the process of being delivered to a Handler.
* </p>
*/
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
/**
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
MessageQueue
消息队列采用排队方式对消息进行处理,就是先到的消息会先得到处理,但是如果消息本身指定
了被处理的时刻,则必须等到该时刻才能处理消息。消息在MessageQueue中使用Message类表
示,队列中的消息以链表的结构进行存储,Message对象内部包含一个next变量,该变量指向下一
个消息。
MessageQueue中的两个主要函数是 “取出消息” 和 “添加消息” ,分别为函数next()和enqueueMessage()。
next()源码 :
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (false) Log.v("MessageQueue", "Returning message: " + msg);
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf("MessageQueue", "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
<1>.nativePollOnce(ptr, nextPollTimeoutMillis) :这是一个JNI函数,其作用是从消息队列中
取出一个消息。MessageQueue类内部本身并没有保存消息队列,真正的消息队列数据保存在JNI
中的C 代码中,也就是说,在C 环境中创建了一个NativeMessageQueue数据对象,这就是
nativePollOnce()第一个参数的意义。它是一个in t型变量,在C 环境中,该变量将被强制转换为一
个NativeMessageQueue对象。在C环境中,如果消息队列中没有消息,将导致当前线程被挂起
(wait ) ;如果消息队列中有消息,则C 代码中将把该消息赋值给Java环境中的mMessages变量。
<2>.在synchronized(this)关键字中,th is被用做取消息和写消息的锁,在enqueueMessage()函
数中也使用synchronized(this)进行代码同步。本步代码比较简单,仅仅是判断消息所指定的执行时
间是否到了。如果到了,就返回该消息,并将mMessages变量置空;如果时间还没有到,则尝试读
取下一个消息。
<3>.如果mMessages为空,则说明C 环境中的消息队列没有可执行的消息了, 因此,执行
mPendingldleHandlers列表中的“ 空闲回调函数”。程序员可以向MessageQueue中注册一些
“空闲回调函数”,从而当线程中没有消息可处理时去执行这些“空闲代码”。
enqueueMessage():
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w("MessageQueue", e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
<1>.将参数msg赋值给mMessages (mMessages = msg; ) 。
<2>.调用nativeWake(mPtr)。这是一个JNI函数,其内部会将mMessages消息添加到C 环境中
的消息队列中,并且如果消息线程正处于挂起(wait)状态,则唤醒该线程。
Handler
虽然MessageQueue提供了直接读/写的函数接口,但是一般不直接读/写消息队列。在Looper.loop()
函数中,当取出消息后,会回调msg.target对象的handleMessage()函数,而msg.target的类型正是
Handler。
一般使用Handler类向消息队列中发送消息,并重载Handler类的handleMessage()函数添加消息处理代码。
Handler对象只能添加到有消息队列的线程中,否则会发生异常。我们可以从Handler类的构造
函数中看得出来:
/**
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with represent to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
因此,在构造Handler对象前,必须已经执行过Looper.prepare(),但prepare()不能被执行两
次。创建Handler对象可以再执行Looper.loop()函数之前,也可以再执行之后。我们平时一般
在Activity对象的初始化代码中添加Handler对象,但是实际上,在Activity对象被构造前,Activity
所在的线程已经执行了Looper.prepare()。所以为什么明明Handler里有判断(if(mLooper == null))
我们感觉我们没调用Looper.prepare()方法也能初始化Handler。
一个线程中可以包含多个Handler对象。在Looper.loop()函数中,不同的Message对应不同的Handler
对象,从而回调不同的handleMessage()函数。
异步消息处理线程在Framework中被广泛使用,除了用于多线程消息传递外,它还和跨进程调用(IPC)
一起被使用,用于实现异步跨进程调用。所以我们可以这样,以后只要看到Handler对象,就应该想到异
步消息处理线程。
Rights Reserved