Table of Contents generated with DocToc
时间复杂度
通常使用最差的时间复杂度来衡量一个算法的好坏。
常数时间 O(1) 代表这个操作和数据量没关系,是一个固定时间的操作,比如说四则运算。
对于一个算法来说,可能会计算出如下操作次数 aN + 1
,N
代表数据量。那么该算法的时间复杂度就是 O(N)。因为我们在计算时间复杂度的时候,数据量通常是非常大的,这时候低阶项和常数项可以忽略不计。
当然可能会出现两个算法都是 O(N) 的时间复杂度,那么对比两个算法的好坏就要通过对比低阶项和常数项了。
位运算
位运算在算法中很有用,速度可以比四则运算快很多。
在学习位运算之前应该知道十进制如何转二进制,二进制如何转十进制。这里说明下简单的计算方式
- 十进制
33
可以看成是32 + 1
,并且33
应该是六位二进制的(因为33
近似32
,而32
是 2 的五次方,所以是六位),那么 十进制33
就是100001
,只要是 2 的次方,那么就是 1 否则都为 0 - 那么二进制
100001
同理,首位是2^5
,末位是2^0
,相加得出 33
左移 <<
1 | 10 << 1; // -> 20 |
左移就是将二进制全部往左移动,10
在二进制中表示为 1010
,左移一位后变成 10100
,转换为十进制也就是 20,所以基本可以把左移看成以下公式 a * (2 ^ b)
算数右移 >>
1 | 10 >> 1; // -> 5 |
算数右移就是将二进制全部往右移动并去除多余的右边,10
在二进制中表示为 1010
,右移一位后变成 101
,转换为十进制也就是 5,所以基本可以把右移看成以下公式 int v = a / (2 ^ b)
右移很好用,比如可以用在二分算法中取中间值
1 | 13 >> 1; // -> 6 |
按位操作
按位与
每一位都为 1,结果才为 1
1 | 8 & 7; // -> 0 |
按位或
其中一位为 1,结果就是 1
1 | 8 | 7; // -> 15 |
按位异或
每一位都不同,结果才为 1
1 | 8 ^ 7; // -> 15 |
从以上代码中可以发现按位异或就是不进位加法
面试题:两个数不使用四则运算得出和
这道题中可以按位异或,因为按位异或就是不进位加法,8 ^ 8 = 0
如果进位了,就是 16 了,所以我们只需要将两个数进行异或操作,然后进位。那么也就是说两个二进制都是 1 的位置,左边应该有一个进位 1,所以可以得出以下公式 a + b = (a ^ b) + ((a & b) << 1)
,然后通过迭代的方式模拟加法
1 | function sum(a, b) { |
排序
以下两个函数是排序中会用到的通用函数,就不一一写了
1 | function checkArray(array) { |
冒泡排序
冒泡排序的原理如下,从第一个元素开始,把当前元素和下一个索引元素进行比较。如果当前元素大,那么就交换位置,重复操作直到比较到最后一个元素,那么此时最后一个元素就是该数组中最大的数。下一轮重复以上操作,但是此时最后一个元素已经是最大数了,所以不需要再比较最后一个元素,只需要比较到 length - 1
的位置。
以下是实现该算法的代码
1 | function bubble(array) { |
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
插入排序
插入排序的原理如下。第一个元素默认是已排序元素,取出下一个元素和当前元素比较,如果当前元素大就交换位置。那么此时第一个元素就是当前的最小数,所以下次取出操作从第三个元素开始,向前对比,重复之前的操作。
以下是实现该算法的代码
1 | function insertion(array) { |
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
选择排序
选择排序的原理如下。遍历数组,设置最小值的索引为 0,如果取出的值比当前最小值小,就替换最小值索引,遍历完成后,将第一个元素和最小值索引上的值交换。如上操作后,第一个元素就是数组中的最小值,下次遍历就可以从索引 1 开始重复上述操作。
以下是实现该算法的代码
1 | function selection(array) { |
该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1
,去掉常数项以后得出时间复杂度是 O(n * n)
归并排序
归并排序的原理如下。递归的将数组两两分开直到最多包含两个元素,然后将数组排序合并,最终合并为排序好的数组。假设我有一组数组 [3, 1, 2, 8, 9, 7, 6]
,中间数索引是 3,先排序数组 [3, 1, 2, 8]
。在这个左边数组上,继续拆分直到变成数组包含两个元素(如果数组长度是奇数的话,会有一个拆分数组只包含一个元素)。然后排序数组 [3, 1]
和 [2, 8]
,然后再排序数组 [1, 3, 2, 8]
,这样左边数组就排序完成,然后按照以上思路排序右边数组,最后将数组 [1, 2, 3, 8]
和 [6, 7, 9]
排序。
以下是实现该算法的代码
1 | function sort(array) { |
以上算法使用了递归的思想。递归的本质就是压栈,每递归执行一次函数,就将该函数的信息(比如参数,内部的变量,执行到的行数)压栈,直到遇到终止条件,然后出栈并继续执行函数。对于以上递归函数的调用轨迹如下
1 | mergeSort(data, 0, 6); // mid = 3 |
该算法的操作次数是可以这样计算:递归了两次,每次数据量是数组的一半,并且最后把整个数组迭代了一次,所以得出表达式 2T(N / 2) + T(N)
(T 代表时间,N 代表数据量)。根据该表达式可以套用 该公式 得出时间复杂度为 O(N * logN)
快排
快排的原理如下。随机选取一个数组中的值作为基准值,从左至右取值与基准值对比大小。比基准值小的放数组左边,大的放右边,对比完成后将基准值和第一个比基准值大的值交换位置。然后将数组以基准值的位置分为两部分,继续递归以上操作。
以下是实现该算法的代码
1 | function sort(array) { |
该算法的复杂度和归并排序是相同的,但是额外空间复杂度比归并排序少,只需 O(logN),并且相比归并排序来说,所需的常数时间也更少。
面试题
Sort Colors:该题目来自 LeetCode,题目需要我们将 [2,0,2,1,1,0]
排序成 [0,0,1,1,2,2]
,这个问题就可以使用三路快排的思想。
以下是代码实现
1 | var sortColors = function (nums) { |
Kth Largest Element in an Array:该题目来自 LeetCode,题目需要找出数组中第 K 大的元素,这问题也可以使用快排的思路。并且因为是找出第 K 大元素,所以在分离数组的过程中,可以找出需要的元素在哪边,然后只需要排序相应的一边数组就好。
以下是代码实现
1 | var findKthLargest = function (nums, k) { |
堆排序
堆排序利用了二叉堆的特性来做,二叉堆通常用数组表示,并且二叉堆是一颗完全二叉树(所有叶节点(最底层的节点)都是从左往右顺序排序,并且其他层的节点都是满的)。二叉堆又分为大根堆与小根堆。
- 大根堆是某个节点的所有子节点的值都比他小
- 小根堆是某个节点的所有子节点的值都比他大
堆排序的原理就是组成一个大根堆或者小根堆。以小根堆为例,某个节点的左边子节点索引是 i * 2 + 1
,右边是 i * 2 + 2
,父节点是 (i - 1) /2
。
- 首先遍历数组,判断该节点的父节点是否比他小,如果小就交换位置并继续判断,直到他的父节点比他大
- 重新以上操作 1,直到数组首位是最大值
- 然后将首位和末尾交换位置并将数组长度减一,表示数组末尾已是最大值,不需要再比较大小
- 对比左右节点哪个大,然后记住大的节点的索引并且和父节点对比大小,如果子节点大就交换位置
- 重复以上操作 3 - 4 直到整个数组都是大根堆。
以下是实现该算法的代码
1 | function heap(array) { |
以上代码实现了小根堆,如果需要实现大根堆,只需要把节点对比反一下就好。
该算法的复杂度是 O(logN)
系统自带排序实现
每个语言的排序内部实现都是不同的。
对于 JS 来说,数组长度大于 10 会采用快排,否则使用插入排序 源码实现 。选择插入排序是因为虽然时间复杂度很差,但是在数据量很小的情况下和 O(N * logN)
相差无几,然而插入排序需要的常数时间很小,所以相对别的排序来说更快。
对于 Java 来说,还会考虑内部的元素的类型。对于存储对象的数组来说,会采用稳定性好的算法。稳定性的意思就是对于相同值来说,相对顺序不能改变。
链表
反转单向链表
该题目来自 LeetCode,题目需要将一个单向链表反转。思路很简单,使用三个变量分别表示当前节点和当前节点的前后节点,虽然这题很简单,但是却是一道面试常考题
以下是实现该算法的代码
1 | var reverseList = function (head) { |
树
二叉树的先序,中序,后序遍历
先序遍历表示先访问根节点,然后访问左节点,最后访问右节点。
中序遍历表示先访问左节点,然后访问根节点,最后访问右节点。
后序遍历表示先访问左节点,然后访问右节点,最后访问根节点。
递归实现
递归实现相当简单,代码如下
1 | function TreeNode(val) { |
对于递归的实现来说,只需要理解每个节点都会被访问三次就明白为什么这样实现了。
非递归实现
非递归实现使用了栈的结构,通过栈的先进后出模拟递归实现。
以下是先序遍历代码实现
1 | function pre(root) { |
以下是中序遍历代码实现
1 | function mid(root) { |
以下是后序遍历代码实现,该代码使用了两个栈来实现遍历,相比一个栈的遍历来说要容易理解很多
1 | function pos(root) { |
中序遍历的前驱后继节点
实现这个算法的前提是节点有一个 parent
的指针指向父节点,根节点指向 null
。
如图所示,该树的中序遍历结果是 4, 2, 5, 1, 6, 3, 7
前驱节点
对于节点 2
来说,他的前驱节点就是 4
,按照中序遍历原则,可以得出以下结论
- 如果选取的节点的左节点不为空,就找该左节点最右的节点。对于节点
1
来说,他有左节点2
,那么节点2
的最右节点就是5
- 如果左节点为空,且目标节点是父节点的右节点,那么前驱节点为父节点。对于节点
5
来说,没有左节点,且是节点2
的右节点,所以节点2
是前驱节点 - 如果左节点为空,且目标节点是父节点的左节点,向上寻找到第一个是父节点的右节点的节点。对于节点
6
来说,没有左节点,且是节点3
的左节点,所以向上寻找到节点1
,发现节点3
是节点1
的右节点,所以节点1
是节点6
的前驱节点
以下是算法实现
1 | function predecessor(node) { |
后继节点
对于节点 2
来说,他的后继节点就是 5
,按照中序遍历原则,可以得出以下结论
- 如果有右节点,就找到该右节点的最左节点。对于节点
1
来说,他有右节点3
,那么节点3
的最左节点就是6
- 如果没有右节点,就向上遍历直到找到一个节点是父节点的左节点。对于节点
5
来说,没有右节点,就向上寻找到节点2
,该节点是父节点1
的左节点,所以节点1
是后继节点
以下是算法实现
1 | function successor(node) { |
树的深度
树的最大深度:该题目来自 Leetcode,题目需要求出一颗二叉树的最大深度
以下是算法实现
1 | var maxDepth = function (root) { |
对于该递归函数可以这样理解:一旦没有找到节点就会返回 0,每弹出一次递归函数就会加一,树有三层就会得到 3。
动态规划
动态规划背后的基本思想非常简单。就是将一个问题拆分为子问题,一般来说这些子问题都是非常相似的,那么我们可以通过只解决一次每个子问题来达到减少计算量的目的。
一旦得出每个子问题的解,就存储该结果以便下次使用。
斐波那契数列
斐波那契数列就是从 0 和 1 开始,后面的数都是前两个数之和
0,1,1,2,3,5,8,13,21,34,55,89….
那么显然易见,我们可以通过递归的方式来完成求解斐波那契数列
1 | function fib(n) { |
以上代码已经可以完美的解决问题。但是以上解法却存在很严重的性能问题,当 n 越大的时候,需要的时间是指数增长的,这时候就可以通过动态规划来解决这个问题。
动态规划的本质其实就是两点
- 自底向上分解子问题
- 通过变量存储已经计算过的解
根据上面两点,我们的斐波那契数列的动态规划思路也就出来了
- 斐波那契数列从 0 和 1 开始,那么这就是这个子问题的最底层
- 通过数组来存储每一位所对应的斐波那契数列的值
1 | function fib(n) { |
0 - 1 背包问题
该问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。每个问题只能放入至多一次。
假设我们有以下物品
物品 ID / 重量 | 价值 |
---|---|
1 | 3 |
2 | 7 |
3 | 12 |
对于一个总容量为 5 的背包来说,我们可以放入重量 2 和 3 的物品来达到背包内的物品总价值最高。
对于这个问题来说,子问题就两个,分别是放物品和不放物品,可以通过以下表格来理解子问题
物品 ID / 剩余容量 | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
1 | 0 | 3 | 3 | 3 | 3 | 3 |
2 | 0 | 3 | 7 | 10 | 10 | 10 |
3 | 0 | 3 | 7 | 12 | 15 | 19 |
直接来分析能放三种物品的情况,也就是最后一行
- 当容量少于 3 时,只取上一行对应的数据,因为当前容量不能容纳物品 3
- 当容量 为 3 时,考虑两种情况,分别为放入物品 3 和不放物品 3
- 不放物品 3 的情况下,总价值为 10
- 放入物品 3 的情况下,总价值为 12,所以应该放入物品 3
- 当容量 为 4 时,考虑两种情况,分别为放入物品 3 和不放物品 3
- 不放物品 3 的情况下,总价值为 10
- 放入物品 3 的情况下,和放入物品 1 的价值相加,得出总价值为 15,所以应该放入物品 3
- 当容量 为 5 时,考虑两种情况,分别为放入物品 3 和不放物品 3
- 不放物品 3 的情况下,总价值为 10
- 放入物品 3 的情况下,和放入物品 2 的价值相加,得出总价值为 19,所以应该放入物品 3
以下代码对照上表更容易理解
1 | /** |
最长递增子序列
最长递增子序列意思是在一组数字中,找出最长一串递增的数字,比如
0, 3, 4, 17, 2, 8, 6, 10
对于以上这串数字来说,最长递增子序列就是 0, 3, 4, 8, 10,可以通过以下表格更清晰的理解
数字 | 0 | 3 | 4 | 17 | 2 | 8 | 6 | 10 |
---|---|---|---|---|---|---|---|---|
长度 | 1 | 2 | 3 | 4 | 2 | 4 | 4 | 5 |
通过以上表格可以很清晰的发现一个规律,找出刚好比当前数字小的数,并且在小的数组成的长度基础上加一。
这个问题的动态思路解法很简单,直接上代码
1 | function lis(n) { |
字符串相关
在字符串相关算法中,Trie 树可以解决解决很多问题,同时具备良好的空间和时间复杂度,比如以下问题
- 词频统计
- 前缀匹配
如果你对于 Trie 树还不怎么了解,可以前往 这里 阅读